If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+80x-384=0
a = 2; b = 80; c = -384;
Δ = b2-4ac
Δ = 802-4·2·(-384)
Δ = 9472
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9472}=\sqrt{256*37}=\sqrt{256}*\sqrt{37}=16\sqrt{37}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(80)-16\sqrt{37}}{2*2}=\frac{-80-16\sqrt{37}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(80)+16\sqrt{37}}{2*2}=\frac{-80+16\sqrt{37}}{4} $
| 4+2x=0+13 | | -2y^2+14y=0 | | 4(10)+14=c | | 6v^2=726 | | 7x=298 | | 6(x+5)=6x | | 36=13x=5(-16+15x)-18 | | 9-x^2=27 | | 5h/6-19=513/24 | | 5(w+8)-7w=30 | | 3+3.5(z+2)=5.52-2 | | 12÷g=3 | | a(4)+a=60 | | 36+13x=5(-16=15x)-8 | | (1+x3)^5=32 | | 60+.3x=x | | p10-2=-1 | | 141.14=5s+19.9 | | 12×g=3 | | -12x=444 | | 3y+10=-7 | | 3(2f+4)=2(3f-4) | | 17-6x=5x+18 | | 4x+7=96 | | 1x=128 | | Y=(-x+4)^2 | | (3/4)x-12=-3x+13 | | 2x+116=x=64=180 | | 2(x+9)=100 | | 0=0+12t-4.9t^2 | | 0.9x+5.1x-7=2*2.5x+2x-3 | | 7(3+x)=-14 |